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Summary
Reinforcement Learning (RL) has made significant strides but struggles with social and

continuous learning. Cognitive neuroscience highlights metacognition as key to human self-
monitoring, knowledge retention, and adaptive behavior, yet its potential in AI remains un-
derexplored. Metacognition could mitigate RL’s catastrophic forgetting and enhance social
intelligence, but current implementations focus on basic perceptual tasks, overlooking broader
applications. This study introduces the Metacognitive Architecture for Perceptual and So-
cial Learning (MAPS), integrating a second-order (metacognitive) network into AI systems
(AIS) to improve both social and continuous learning. We evaluate MAPS across four condi-
tions: perceptual learning (Know Thyself), SARL (MinAtar), SARL with continuous learning
(SARL+CL, MinAtar), and MARL (MeltingPot 2.0). To assess social learning, we compare a
2nd-order confidence network in perceptual vs. social tasks, analyzing its impact on decision-
making and interaction dynamics. For continuous learning, a 2nd-order teacher network stabi-
lizes new knowledge integration, preventing past knowledge loss. Results show that metacog-
nitive mechanisms significantly enhance adaptability in AIS. In perceptual tasks, the cascade
model improves structured learning and information flow. In SARL, combining a 2nd-order
network with a cascade model enables complex behavior adaptation. In SARL+CL, it prevents
catastrophic forgetting more effectively than DQN. In MARL, MAPS shows promise in high-
variability environments, though further testing is needed. These findings suggest metacogni-
tion as a powerful tool for enhancing AI’s learning efficiency and social competence.

Contribution(s)
1. This paper proposes an architecture for improved learning using a confidence (2nd order)

network, which is tested in in a variety of environments. We test it from simple pattern de-
tection, to single agent environments with multiple obstacles, and multi agent reinforcement
learning. We show that in a variety of complex and high-variability settings, our architec-
ture can exhibit improved performance over not using the basic elements of the architecture
(2nd order network and cascade model).

Context: Prior work established a similar concept through a different implementation,
meta-autoencoders architecture. This architecture also aims to learn representations of first-
order neural networks, however it used different components and wasn’t tested in complex
environments as single agent and multi agent reinforcement learning Kanai et al. (2024).

2. This paper introduces the use of cascade model to an existing metacognitive architecture
consisting of a 2nd order confidence network. We show that the cascade model plays a
central role, improving structured learning and information flow. In uncontrolled social
environments (SARL), the combination of a 2nd-order network and a cascade model is rel-
evant for effective learning, particularly in tasks with dynamic obstacles or interactions.
Context: Prior work introduced an architecture that used a 2nd order network for confi-
dence judgments, but didn’t include a cascade model nor tested it on complex environments
A. Pasquali & Cleeremans (2010).
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Abstract

Reinforcement Learning (RL) has made significant strides but struggles with social and1
continuous learning. Cognitive neuroscience highlights metacognition as key to hu-2
man self-monitoring, knowledge retention, and adaptive behavior, yet its potential in3
AI remains underexplored. Metacognition could mitigate RL’s catastrophic forgetting4
and enhance social intelligence, but current implementations focus on basic percep-5
tual tasks, overlooking broader applications. This study introduces the Metacognitive6
Architecture for Perceptual and Social Learning (MAPS), integrating a second-order7
(metacognitive) network into AI systems (AIS) to improve both social and continuous8
learning. We evaluate MAPS across four conditions: perceptual learning (Know Thy-9
self), SARL (MinAtar), SARL with continuous learning (SARL+CL, MinAtar), and10
MARL (MeltingPot 2.0). To assess social learning, we compare a 2nd-order confi-11
dence network in perceptual vs. social tasks, analyzing its impact on decision-making12
and interaction dynamics. For continuous learning, a 2nd-order teacher network sta-13
bilizes new knowledge integration, preventing past knowledge loss. Results show14
that metacognitive mechanisms significantly enhance adaptability in AIS. In perceptual15
tasks, the cascade model improves structured learning and information flow. In SARL,16
combining a 2nd-order network with a cascade model enables complex behavior adap-17
tation. In SARL+CL, it prevents catastrophic forgetting more effectively than DQN. In18
MARL, MAPS shows promise in high-variability environments, though further testing19
is needed. These findings suggest metacognition as a powerful tool for enhancing AI’s20
learning efficiency and social competence.21

1 Introduction22

Reinforcement Learning (RL) differs from supervised and unsupervised learning in that it ac-23
quires knowledge through direct interaction with an environment, refines decisions through trial and24
error, and optimizes behavior based on rewards and penalties. This dynamic learning process makes25
RL more analogous to human cognition, enabling breakthroughs in game-playing AI Silver et al.26
(2016), robotics Zhang & Mo (2021) , and autonomous systems Jeyaraman et al. (2024). How-27
ever, despite its adaptability, RL remains far less efficient than human learning Koedinger et al.28
(2023). Over millions of years, humans have evolved cognitive shortcuts and adaptive mechanisms29
that allow for rapid generalization across environments and tasks—capabilities RL still struggles to30
replicate Jain et al. (2020).31

One critical cognitive shortcut that humans possess—but standard AI lacks—is self-awareness,32
or metacognitive ability—the capacity to monitor, evaluate, and adjust one’s own cognitive pro-33
cesses in real-time. This deeply human trait enables faster learning, better decision-making, and34
more efficient resource use Lu et al. (2025) by allowing individuals to recognize mistakes early35
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and adapt strategies accordingly, minimizing trial and error, cognitive load, and inefficiencies in36
problem-solving. Additionally, metacognition enhances confidence calibration, ensuring individu-37
als act decisively when correct and reassess when uncertain, leading to more effective and adaptive38
learning Garbayo et al. (2023).39

In recent years, metacognition has been integrated into RL to replicate humans’ ability to self-40
correct and achieve greater learning efficiency Sugiyama et al. (2023). One method for embedding41
metacognitive processes in RL is through a 2nd-order network—a framework that pairs a primary42
task network (e.g., for image recognition or gameplay) with a secondary network dedicated to evalu-43
ating its performance. Serving as a reflective mechanism, the 2nd-order network assesses confidence44
levels, detects knowledge gaps, and triggers adaptive adjustments to enhance learning outcomes45
Sandberg et al. (2010). Research shows that, much like in humans, embedding metacognitive abili-46
ties in RL agents enables them to assess their own progress and dynamically adjust their strategies.47
For example, metacognitive RL agents can shift from exploration to exploitation once mastery is48
achieved Norman & Clune (2024) or reduce redundant trials, accelerating convergence to optimal49
policies Anderson et al. (2006). These mechanisms enhance exploration-exploitation balance, ac-50
celerate skill acquisition, and improve adaptability in complex environments, making metacognition51
a key factor in developing more intelligent and efficient RL systems.52

The influence of metacognition on learning extends beyond individual cognition to social learning.53
Evidence of this connection lies in Theory of Mind (ToM)—the human ability to understand others54
in a social context Feurer et al. (2015)—which is believed to be rooted in metacognitive abilities55
Frith (2012). This suggests that self-reflection forms the foundation for understanding others, as56
the same cognitive mechanisms that allow us to evaluate our own thoughts and behaviors also help57
us interpret the intentions and perspectives of those around us Kastel et al. (2023). In essence,58
reflection is a fundamental and transferable human skill, facilitating both self-awareness and social59
cognition, as we naturally draw parallels between our own experiences and those of others Lincoln60
et al. (2020). This ability is crucial for effective social interaction and cooperation, reinforcing61
metacognition’s central role in both individual and collective intelligence.62

Despite its potential to enhance both individual and social intelligence in artificial agents, the full63
capabilities of metacognition in AI remain largely unexplored. In individual learning, its role in en-64
abling continuous learning across tasks and environments is often overlooked (Sidra Mason, 2024).65
Catastrophic forgetting—where AI loses previously learned knowledge when acquiring new infor-66
mation—remains a major challenge, particularly in neural networks, where new learning overwrites67
existing representations Kemker et al. (2018). Unlike humans, who integrate knowledge adaptively,68
RL agents struggle to retain skills across different tasks. Similarly, in social learning, most compu-69
tational implementations are limited to basic perceptual tasks Kanai et al. (2024), failing to leverage70
metacognition’s full potential for socially relevant applications. Addressing these gaps could unlock71
more adaptive, transferable, and socially intelligent AI systems.72

This study aims to explore and evaluate the potential benefits of metacognitive abilities in AI73
systems (AIS), focusing on both social and continuous learning. We introduce the Metacognitive74
Architecture for Perceptual and Social Learning (MAPS) and investigate whether AIS performs75
better in these domains when implementing a second-order (metacognitive) network. To assess76
social learning, we integrate a 2nd-order confidence network not only in perceptual tasks but also77
in single-agent (SARL) and multi-agent (MARL) reinforcement learning scenarios. RL provides an78
ideal framework for studying social learning dynamics, as it moves beyond basic pattern detection to79
engage agents in complex decision-making and interactions Ndousse et al. (2021). This structured80
approach allows us to systematically examine whether metacognition enhances both social behavior81
and overall performance in advanced learning environments.82

To examine continuous learning within a metacognitive architecture, we implement a second-order83
teacher network designed to help AI retain past knowledge while acquiring new skills, addressing84
the challenge of catastrophic forgetting. This network stores learned representations from previous85
tasks and serves as a reference for the main task network, which actively learns new information.86
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As the AI adapts, it compares its outputs to those of the teacher network, ensuring that new learning87
does not overwrite essential prior knowledge. This balance is maintained through a hybrid loss88
function, which combines three key components: current task loss to focus on new learning, weight89
regularization loss to prevent deviation from past knowledge, and feature loss to stabilize internal90
representations.91

Building on this framework, we test MAPS across four key conditions to evaluate its impact on92
both social and continuous learning: pattern recognition (Know Thyself), SARL (MinAtar), SARL93
with Continuous learning (SARL+CL, MinAtar), and MARL (MeltingPot 2.0). To investigate social94
learning, we compare the benefits of a 2nd-order confidence network in perceptual vs. social (SARL95
and MARL) tasks, examining whether metacognition enhances decision-making and interaction dy-96
namics. For continuous learning, we implement a 2nd-order teacher network, acting as a reference97
for the main task network, ensuring new knowledge integrates smoothly without erasing past learn-98
ing. Through these experiments, we systematically assess the effectiveness of metacognition in99
fostering more adaptable and socially intelligent AI systems.100

2 Methodology101

Our research over the effect of the MAPS architecture is divided into analysis over 4 environments:102
pattern detection (using blindsight and artificial grammar learning; from Know-Thyself), single-103
agent reinforcement learning (using 5 MinAtar environments), single-agent reinforcement learning104
+ continuous learning (MinAtar), and multi-agent reinforcement learning (MARL; using 4 Google105
Deepmind Meltingpot environments). For MARL, we present mostly preliminary results. On the106
other hand, we implement a continuous learning approach for single agent reinforcement learning107
following a curriculum, and study whether MAPS attenuate catastrophic forgetting.108

Know-Thyself environments109

For pattern detection, we base our baseline implementation of a 2nd order network in the work of110
A. Pasquali & Cleeremans (2010). Thus, for simplicity and to allow us to more easily discern the111
effect of MAPS, we use an auto-encoder for the primary task, and a comparator matrix connected to112
2 wagering units for the second-order network as in A. Pasquali & Cleeremans (2010). We employ113
a contrastive loss for the main task, which provides crucial information flow for wagering Chen114
et al. (2020). For wagering, we used a cross-entropy loss to handle class imbalance. Both the115
1st and 2nd order networks implement a cascade model that facilitates a smooth graded build-up116
of activation McClelland et al. (1989). We empirically selected 50 cascade iterations for pattern117
detection, 50 for SARL, and no cascade model variant in MARL due to computational and training118
time constraints.119

Single and Multi agent reinforcement learning120

For SARL, we employ a DQN van Hasselt et al. (2015) framework. We use convolutional layers121
which allow for reduced computational complexity, an auto-encoder, and a replay buffer for the122
learning stability. We then compute the comparison matrix using the inputs and outputs of the123
value network’s auto-encoder, and connect this to 2 wagering units. For the wagering objective, we124
compute rewards in batches of 128 using an exponential moving average (EMA) with a smoothing125
factor of α = 0.45. At each step t, a low/high wager is assigned based on whether the last reward is126
greater than EMA. For MARL, 0.25 was used. Both were found empirically.127

For MARL, we use an MAPPO framework Yu et al. (2022), convolutional layers, sinusoidal-based128
relative positional encoding to add positional information, and a Gated Recurrent Unit (GRU) for129
stability. A second order network is used as in SARL.130
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Figure 1: Visualization of trained agents of each of the MinAtar scenarios tested: Space Invaders(1st
image to the left), Breakout(2nd), Seaquest(3rd), Asterix (4th), and Freeway(5th).

Figure 2: Visualization of trained agents of each of the Melting Pot scenarios tested: Commons Har-
vest Closed(1st image to the left), Commons Harvest Partnership(2nd), Chemistry Three Metabolic
Cycles with Plentiful Distractors(3rd), and Territory Inside Out(4th).

Continuous Learning131

We implement a continuous learning approach following a curriculum (curriculum learning) us-132
ing the SARL implementation as a baseline. As our aim is to train sequentially over the MinAtar133
environments, we modify the main task network (Q Network) to accommodate varying input chan-134
nels across different environments. We adapt the Q network to handle multiple input channels by135
setting the input dimension to the maximum number of channels across all environments. For envi-136
ronments with fewer channels, we apply zero-padding to match the expected size, followed by a 1×1137
convolution layer with ReLU activation to process inputs of different sizes while preserving spatial138
information. The output from this layer connects to our standard baseline Q network architecture.139

Drawing inspiration from Li and Hoiem’s work Li & Hoiem (2018), we implement a strategy140
to effectively retain information from previously encountered environments. Our approach employs141
a teacher network loaded with weights from the previously trained task. We calculate separate142
forward passes through both the current task network (main task network) and the previous task143
network (teacher network). We then utilize a hybrid loss function consisting of three weighted144
components: (1) the current task loss (using a contractive loss), (2) a weight regularization loss145
(inspired by elastic weight consolidation, which penalizes significant changes to model parameters146
from their previous state; Kirkpatrick et al. (2017)), and (3) a feature loss (the MSE loss between147
hidden layer outputs of both networks, using the teacher network as the target to preserve internal148
state behaviors of the previous model). Additionally, all loss components are normalized using149
the maximum individual loss observed throughout epochs to ensure comparability and facilitate150
summation. Our curriculum for training progresses through the following environments in sequence:151
Breakout, Space Invaders, Seaquest, and Freeway. This ordering reflects the environments that152
demonstrated the fastest convergence during our preliminary SARL experiments.153

3 Experimental Set Up154

We empirically select hyperparameters for each of our four major experiments (a complete list is155
provided in Appendix B). For three of the 4 major experiments (Know-Thyself environments, SARL,156
and SARL+CL), we investigate the effect of MAPS using six distinct settings to better understand157
how each of the main components of MAPS (cascade model and second-order network) contributes158
to overall performance. The definition of each of these six settings is outlined below.159
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Setting Description
Setting 1 (Baseline) No 2nd order network and no cascade model
Setting 2 Cascade model, but no 2nd order network
Setting 3 2nd order network, but no cascade model
Setting 4 2nd order network, and a cascade model on the 1st order network only
Setting 5 2nd order network, and a cascade model on the 2nd order network only
Setting 6 (MAPS) 2nd order network, and a cascade model on both networks

Table 1: Description of the six settings used to analyze the components of MAPS.

Figure 1 provides a high-level depiction of the architecture used in both the SARL and SARL+CL160
experiments. It should be noted that for Know-Thyself environments, the equivalent of the Q-161
network would be a simple autoencoder, while for MARL we employ a GRU.162

Figure 3: High level illustration of the six settings used to analyze the components of MAPS.

4 Results163

Blindisght and Artificial Grammar Learning (Know-Thyself environments)164

For blindsight, we train our networks using a combination of simple patterns that contain: 1) ran-165
dom noise patterns, and 2) patterns with a single stimulus representing the blindsight phenomenon166
(This is referred as suprathreshold patterns in A. Pasquali & Cleeremans (2010), refer to Appendix167
A for additional information). To prevent overfitting, new patterns are generated for each epoch.168
Table 2 compares the proposed settings outlined in Table 1. It’s important to note that we are fo-169
cusing on suprathreshold results (the results shown in the table), which is thought to be the only170
case for which metacognition should be beneficial Weiskrantz et al. (1974). For blindsight, we171
observe superior performance on the model using MAPS (2nd order network + cascade model in172
both networks). We compare our baseline (Setting-1), with MAPS (setting-6), obtaining a z-score173
of 8.6, meaning MAPS performance is superior and is statistically significant. However, we also see174
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a similar overperformance in other settings (namely 2 and 4), with the three of them having similar175
overperformance over the baseline and with the common characteristic of using cascade model in176
the main task network.This observation may suggest that for simple tasks as blindsight, the superior177
performance of MAPS is primarily driven by the benefits of the cascade model.178

For AGL, we pre-train the model, save the weights of the 2nd-order network, and disable back-179
propagation through it during training. Randomly generated strings are used for pre-training, gram-180
mar A for training, and a mix of grammar A and grammar B for testing. Grammar strings are defined181
as per Persaud et al. (2007), and we follow the data proportions outlined by Pasquali A. Pasquali182
& Cleeremans (2010). We employ two training schemes: high awareness of the rules (training over183
12 epochs) and low awareness (3 epochs). Our results demonstrate improvement in both scenarios184
when using MAPS. We observe statistically significant z-scores of 7.88 and 15.0 for high and low185
consciousness respectively. Additionally, for the low awareness case, all settings show significant186
improvement compared to the autoencoder-only model, including the setting with a 2nd order net-187
work and no cascade model. This supports the hypothesis that metacognition or a 2nd order network188
may be particularly valuable in simple environments with limited training regimes. Alternatively,189
we hypothesize that the positive effect on the main task when using a 2nd order network is more pro-190
nounced when the task achieves a sufficiently high level of confidence relative to an untrained case.191
For instance, we observe that the z-score is half an order of magnitude greater for the low aware-192
ness case (141.1 for MAPS) compared to the high awareness case (41.0 for MAPS). This limitation193
appears to be mitigated by the improved information flow provided by the cascade model.194

Main Task Wagering
2nd

Blindsight Net Cascade Accuracy Z-score (Significant) Accuracy Z-score
Setting-1 (Baseline) No No 0.95± 0.03 0.50± 0.05
Setting-2 No 1st Net 0.97± 0.02 8.50 (Yes) 0.50± 0.05 0.45 (No)
Setting-3 Yes No 0.96± 0.03 0.77 (No) 0.86± 0.03 128.1 (Yes)
Setting-4 Yes 1st Net 0.97± 0.02 9.01 (Yes) 0.85± 0.04 121.2 (Yes)
Setting-5 Yes 2nd Net 0.96± 0.03 0.15 (No) 0.87± 0.04 126.7 (Yes)
Setting-6 (MAPS) Yes Both 0.97± 0.02 8.6 (Yes) 0.86± 0.04 124.5 (Yes)
AGL- High 2nd
Awareness Net Cascade Accuracy Z-score (Significant) Accuracy Z-score
Setting-1 (Baseline) No No 0.63± 0.05 0.38± 0.07
Setting-2 No 1st Net 0.64± 0.04 6.38 (Yes) 0.39± 0.09 1.10 (No)
Setting-3 Yes No 0.64± 0.04 1.61 (No) 0.59± 0.06 45.9 (Yes)
Setting-4 Yes 1st Net 0.66± 0.05 8.20 (Yes) 0.58± 0.06 43.3 (Yes)
Setting-5 Yes 2nd Net 0.63± 0.04 1.09 (No) 0.61± 0.06 48.7 (Yes)
Setting-6 (MAPS) Yes Both 0.65± 0.04 7.88 (Yes) 0.58± 0.06 41.0 (Yes)
AGL- Low 2nd
Awareness Net Cascade Accuracy Z-score (Significant) Accuracy Z-score
Setting-1 (Baseline) No No 0.54± 0.08 0.14± 0.07
Setting-2 No 1st Net 0.61± 0.07 13.3 (Yes) 0.17± 0.07 6.25 (Yes)
Setting-3 Yes No 0.57± 0.07 4.2 (Yes) 0.83± 0.07 143.9 (Yes)
Setting-4 Yes 1st Net 0.62± 0.07 15.7 (Yes) 0.82± 0.07 137.5 (Yes)
Setting-5 Yes 2nd Net 0.56± 0.07 2.3 (Yes) 0.87± 0.07 150.8 (Yes)
Setting-6 (MAPS) Yes Both 0.62± 0.06 15.0 (Yes) 0.82± 0.07 141.1 (Yes)

Table 2: Accuracy, Z-score, and Significant Results for Main Task and Wagering (Know Thyself
environments). We use a total of 450 seeds for each setting.

Single agent reinforcement learning (MinAtar environments)195

In MinAtar, we test Space Invaders, Breakout, Seaquest, Asterix, and Freeway using the six de-196
fined settings to evaluate the effects of MAPS, as well as its main independent components (a 2nd197
order network and cascade model implementation). We train all settings for an equivalent of 500k198
steps across 3 seeds per configuration. Generally, we observe that MAPS outperforms our baseline199
in several cases, particularly in more complex environments. We note that using the cascade model200
with the 2nd order network specifically enables learning of more complex behaviors. This is evi-201
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denced by a final z-score at validation of 5.46 (MAPS) for Seaquest against the DQN baseline, and202
2.89 for Space Invaders (refer to Table 3).203

In Seaquest, we observe a particularly interesting behavior in the learning curves (refer to Figure204
4) where DQN (baseline), DQN + cascade model, and DQN + 2nd order network all learn slowly. In205
contrast, when using a 2nd order network with a cascade model, effective learning occurs, which can206
be seen early in the training and validation curves. This suggests that a 2nd order network is indeed207
crucial in certain scenarios, where even though the cascade model enables the model to function,208
this would not work without the presence of a 2nd order network. This reinforces our belief that209
the cascade model, and the improved information flow it provides, is instrumental for metacognitive210
models in complex tasks.211

Conversely, in Breakout, we observe similar learning patterns across most settings. We hypothe-212
size this is due to the task’s simplicity and lack of background obstacles or agents interacting with213
the main agent (except for a ball breaking walls). This reinforces our observation that MAPS can214
be especially useful for complex environments featuring interactions with obstacles or background215
populations (NPCs). Additionally, in some cases such as Space Invaders, we note that a baseline216
DQN + cascade model also performs well. This suggests us that the cascade model is a key ele-217
ment for learning complex behaviors, in some particular cases even without a 2nd order network, as218
also observed in perceptual tasks. However, it is likely insufficient for tasks that require a greater219
interaction with the environment, as previously shown with Seaquest.220

Figure 4: Training (left) and validation rewards (right) plots for SARL.
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Training Validation
Space 2nd
Invaders Net Cascade Rewards Z-score (Significant) Rewards Z-score
Setting-1 (Baseline) No No 22.48± 1.50 20.15± 1.88
Setting-2 No 1st Net 29.72± 0.85 5.95(Yes) 28.62± 2.36 3.97(Yes)
Setting-3 Yes No 20.67± 2.81 −0.80 (No) 19.75± 2.00 −0.21 (No)
Setting-4 Yes 1st Net 24.57± 0.16 1.97 (Yes) 29.64± 1.92 0.26 ()
Setting-5 Yes 2nd Net 27.20± 0.82 3.91 (Yes) 26.89± 1.59 3.86 (Yes)
Setting-6 (MAPS) Yes Both 26.18± 0.56 3.27 (Yes) 24.38± 0.87 2.89 (Yes)
Breakout
Setting-1 (Baseline) No No 5.68± 0.035 5.82± 0.15
Setting-2 No 1st Net 6.08± 0.34 1.59 (No) 6.1± 0.89 0.43 (No)
Setting-3 Yes No 5.97± 0.39 1.00 (No) 5.78± 0.38 −0.14 (No)
Setting-4 Yes 1st Net 5.81± 1.00 0.18 (No) 5.96± 1.06 0.17 (No)
Setting-5 Yes 2nd Net 5.75± 0.12 0.72 (No) 5.63± 0.12 −1.47 (No)
Setting-6 (MAPS) Yes Both 6.98± 0.80 2.27 (Yes) 6.79± 0.74 1.80 (No)
Seaquest
Setting-1 (Baseline) No No 0.68± 0.10 0.48± 0.10
Setting-2 No 1st Net 0.56± 0.04 −1.50 (No) 0.58± 0.00 1.29 (No)
Setting-3 Yes No 0.55± 0.26 −0.66 (No) 0.42± 0.18 −0.36 (No)
Setting-4 Yes 1st Net 1.75± 0.06 12.34 (Yes) 1.43± 0.12 8.31 (Yes)
Setting-5 Yes 2nd Net 1.96± 1.08 1.67 (No) 1.89± 1.05 1.89 (No)
Setting-6 (MAPS) Yes Both 1.94± 0.38 4.56 (Yes) 1.65± 0.28 5.46 (Yes)
Asterix
Setting-1 (Baseline) No No 0.71± 0.21 0.71± 0.21
Setting-2 No 1st Net 0.58± 0.11 −0.79 (No) 0.59± 0.16 −0.69 (No)
Setting-3 Yes No 2.42± 0.30 6.64 (Yes) 1.91± 0.34 4.22 (Yes)
Setting-4 Yes 1st Net 0.96± 0.20 1.23 (No) 0.83± 0.24 0.51 (No)
Setting-5 Yes 2nd Net 1.14± 0.19 2.16 (Yes) 0.98± 0.25 1.16 (No)
Setting-6 (MAPS) Yes Both 1.61± 0.24 4.09 (Yes) 1.38± 0.27 2.80 (Yes)
Freeway
Setting-1 (Baseline) No No 26.71± 1.15 24.60± 1.98
Setting-2 No 1st Net 25.70± 1.15 −0.87 (No) 24.03± 3.85 −0.18 (No)
Setting-3 Yes No 18.03± 12.80 −0.95 (No) 16.53± 11.78 −0.95 (No)
Setting-4 Yes 1st Net 23.23± 0.18 −4.23 (Yes) 20.0± 0.29 −3.24 (Yes)
Setting-5 Yes 2nd Net 29.78± 3.26 1.26 (No) 26.10± 6.93 0.29 (No)
Setting-6 (MAPS) Yes Both 23.27± 2.84 −1.59 (No) 21.60± 5.27 −0.75 (No)

Table 3: Training and validation rewards, Z-score, and Significant Results for SARL.

Multi agent reinforcement learning (Melting Pot 2.0 environments)221

In MARL settings, we conducted preliminary tests to evaluate the potential benefits of using a222
second-order network in both cooperative and competitive scenarios. We focused on two specific223
environments and benchmarked performance against the leading model presented by Agapiou et al.224
(2023). Agents were trained for 1.5M steps across three seeds. Our findings revealed that the225
second-order network achieved marginally superior performance compared to our GRU baseline in226
several environments, though it still underperformed relative to the top model (ACB) presented in227
Agapiou et al. (2023) (see Table 4). The chemistry game proved to be an exception, probably result228
of this environment being the only within the group of high coefficient of variation (CV). This may229
suggest that metacognition, or a second-order network approach, may be particularly valuable in230
environments characterized by high variability or stochastic behavior in MARL settings. Another231
intuition that points in this direction is the high complexity of the environment, being that: the232
simulation goes through 3 phases each representing a metabolic cycle, and there is presence of233
distractors, and, as we observed in MinAtar, a 2nd order network seems to be specially useful in234
scenarios where there is interaction with multiple background objects or obstacles (as seaquest).235
This in principle could be translated to settings such as chemistry, and thus making sense of our236
observation. However, these results may well be attributed to a completely normal variability due to237
it being just a marginal increase, and thus further experimentation and analysis is required in a more238
extensive study focusing on MARL.239
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Furthermore, we observed marked superiority of the second-order network model when compared240
to the simple GRU baseline in the "territory inside out" environment. Further evaluation of this241
environment yielded a positive z-score of 2.59 relative to our baseline across 10 seeds. Additionally,242
we noted that MAPS consistently produced positive outliers (see Figure 5). These results are243
preliminary mostly due to the high computational resources required to train agents using the244
Melting Pot 2.0 suite, and further testing with the cascade model is necessary to study the extent to245
which the architecture proposed by MAPS can bring to cooperative and competitive scenarios.246

247

Environment GRU GRU ACB
+ 2nd Order

Harvest
Closed 18.9± 1.4 20.6± 2.1 32.8± 10.6
Harvest
Partnership 28.1± 1.9 28.7± 3.8 31.9± 11
Chemistry with
Distractors 1.2± 0.03 1.2± 0.06 1.1± 0.8
Territory
Inside Out 63.5± 8.7 76.5± 8.3 80.3± 48.0

Table 4: Training rewards in 4 multi-agent settings: Commons Harvest Closed, Commons Harvest
Partnership, Chemistry Three Metabolic Cycles with Plentiful Distractors, and Territory Inside Out.

Figure 5: Territory Inside Out Results (10 seeds). Violin plot for avg. rewards (left); and Focal per
Capita Return (right). Focal per capita return is a fairness measure (i.e. equal to 1.0 when all agents
receive equal rewards), as defined by Agapiou et al. (2023).

SARL + Continuous Learning (MinAtar environments)248

For continuous learning, we conducted an extensive search of weights (summing to 1.0) for the249
three losses that we sum to achieve effective learning of new tasks while preserving knowledge of250
previous ones. For study the effectiveness of this approach of picking the weights, we did prelim-251
inary tests on the single configuration that lead to the higher retention (excluding weight regular-252
ization close to 1.0 as this wouldn’t make sense for effectively learn new tasks) after training on 1253
additional environment (task loss=0.5, weight regularization loss =0.3, feature loss=0.2). It’s impor-254
tant to note that superior retention does not necessarily translate to effective training on new tasks.255
The results from our exploration of weights for the 3 losses can be seen in Figure 7.256

We then conducted two main experiments, where we trained sequentially for 100,000 steps (due257
to computational limitations faced when using teacher networks) for each of the 4 environments258
defined in our curriculum. The primary experiment, shown on the right side of Figure 6, utilized the259
optimal retention parameters identified through exploration. This was tested with two base settings:260
DQN and DQN + 2nd order network. For Space Invaders, when evaluated after training through261
various environments, we observed reduced forgetting following the acquisition of new knowledge262
from one following task. However, in all cases, performance approached that of a random policy263
after training on two additional environments or more.264
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Subsequently, we empirically tested different loss combinations, including one with a higher pro-265
portion of weight regularization loss (weights: task loss = 0.3, weight regularization = 0.6, and266
feature loss = 0.1). In this case, this combination was found empirically after testing for several267
seeds with a higher proportion of the weight regularization loss. We tested this configuration across268
all six settings used in previous sections, as shown in the left plot. After evaluating Breakout and269
Space Invaders following training across different environments, knowledge retention was evident270
in both cases, notoriously when using a 2nd order network and cascade model in the 2nd network.271
Consistent with our preliminary tests, learning effectiveness diminished substantially after training272
on two or more additional environments. Notably, our DQN baseline performed at or below random273
policy levels in most cases, contrasting with the lower forgetting observed when using a 2nd order274
network network with cascade model. It’s also noteworthy that the behaviour of the tested settings275
seems to be highly dependent on the selected weights for each of the losses, and thus question the276
robustness of our approach. While it’s notable that in most cases, a lower forgetting vs Baseline is277
evident, further research needs to be done on how to couple a metacognitive approach to be able to278
more efectively retain knowledge, as the notion is that the 2nd order network could, at some point,279
gain independence of the main task to provide valuable confidence information regardless of the280
task.281

Figure 6: Continuous learning results. Left panels show validation rewards for each environment
after sequential training using our continuous learning approach. The top graph displays evaluation
of the Breakout environment after each scenario, while the bottom graph shows the same evaluation
for Space Invaders. Right panels present preliminary results (baseline and 2nd Order Network only)
using the optimal parameters identified for retention.
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Figure 7: Ternary plot representing an extensive search of combinations of the three losses used for
our continuous learning approach. Retention represents the fraction of original validation rewards
effectively preserved after evaluation post-training of a new environment. For practicality, Breakout
was used as baseline followed by training in Space Invaders (50,000 steps per environment).

5 Discussion282

Know Thyself: The Role of MAPS in Perceptual Tasks283

MAPS significantly improves performance in perceptual tasks, with the cascade model playing284
a crucial role. Settings using a cascade model show the greatest gains, suggesting that gradual285
activation smoothing enhances learning. The baseline + cascade model achieves a z-score just below286
MAPS, indicating that in simple tasks, MAPS’ advantage is largely driven by the cascade model.287

In the AGL task, MAPS provides statistically significant improvements over the baseline, espe-288
cially under low-awareness conditions, where the 2nd-order network aids knowledge integration.289
Similarly, in wagering performance, all MAPS settings outperform the baseline, particularly when290
confidence assessments are highly accurate. The cascade model further enhances information flow,291
mitigating limitations in learning.292

What we learn from this condition is that MAPS enhances perceptual learning, with the cascade293
model playing a central role in improving structured learning and information flow.294

SARL: Evaluating Uncontrolled Social Environment Learning in MAPS295

In Seaquest, while DQN and DQN + cascade model struggle, models combining a 2nd-order296
network and a cascade model show early and effective learning, highlighting the necessity of both297
components in complex tasks. In Breakout, most settings perform similarly, likely due to the task’s298
simplicity, suggesting that MAPS is least beneficial in environments with few obstacles. In Space299
Invaders, the DQN + cascade model alone performs well, reinforcing the cascade model’s role in300
complex learning, as observed in perceptual tasks. However, in Seaquest, neither baseline nor par-301
tial MAPS implementations succeed—only DQN + 2nd-order network + cascade model learns ef-302
fectively, confirming the necessity of both mechanisms. In Asterix, the 2nd-order network boosts303
early learning, though the difference diminishes over time, aligning with findings from the AGL304
task, where 2nd-order networks improve early-stage learning speed.305

The Key takeaway for MAPS in an uncontrolled social environment is that it outperforms the306
DQN baseline in complex tasks, with the combination of a 2nd-order network and a cascade model307
proving essential for learning more sophisticated behaviors.308
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MARL: Evaluating Controlled Social Environment Learning in MAPS309

MAPS was tested against a GRU-only baseline in MARL settings over 1.5M steps across three310
seeds. While MAPS performed slightly better than GRU, it fell short of the top ACB model (Agapiou311
et al., 2023). However, in the chemistry game, MAPS showed promise, suggesting that 2nd-order312
networks are particularly useful in high-variability, high-stochasticity environments.313

In Territory Inside Out, MAPS achieved a positive z-score of 2.59 over 10 seeds, showing potential314
for adaptive decision-making. Additionally, MAPS tended to produce positive outliers, suggesting315
capacity for dynamic learning (see Appendix D.4). However, these results remain preliminary, re-316
quiring further evaluation across all six experimental settings.317

We learn from this that While MAPS shows promise in high-variability environments, further318
testing is needed to determine its full impact on multi-agent reinforcement learning.319

SARL+CL: Evaluating Continuous Learning in MAPS320

We identified an optimal loss weight distribution for maximization of knowledge retention (other321
than trivial values of weight regularization close to 1.0): task loss = 0.5, weight regularization = 0.3,322
feature loss = 0.2. While this configuration improves retention, it does not guarantee effective new323
learning. A key trade-off emerged—high weight regularization ( 1.0) preserves past knowledge but324
impairs adaptation, underscoring the need for balance.325

Testing these parameters on DQN and DQN + 2nd-order network, we observed lower forgetting326
in Space Invaders, confirming improved retention. However, after learning two additional environ-327
ments, performance declined to random policy levels, indicating retention has limits when multiple328
tasks are introduced. Adjusting weight regularization loss to 0.6 improved retention in Breakout and329
Space Invaders, but learning still degraded with additional environments.330

In summary, DQN alone struggles with retention, often performing at or below random policy331
levels. In contrast, 2nd-order networks, especially with a cascade model, significantly improve332
continuous learning by preserving prior knowledge.333

6 Conclusion334

This study demonstrates the potential of metacognitive architectures (MAPS) to enhance learning335
in both perceptual and social environments, particularly in complex and high-variability settings.336
In perceptual tasks, the cascade model plays a central role, improving structured learning and in-337
formation flow. In uncontrolled social environments (SARL), the combination of a 2nd-order net-338
work and a cascade model is essential for mastering sophisticated behaviors, particularly in tasks339
with dynamic obstacles or interactions. In continuous learning (SARL + CL), 2nd-order networks340
with a cascade model significantly improve knowledge retention, preventing catastrophic forget-341
ting better than DQN alone. In controlled social environments (MARL), MAPS shows promise in342
high-variability tasks, though further testing is required to fully assess its impact on multi-agent rein-343
forcement learning. These findings suggest that metacognitive mechanisms can enhance adaptabil-344
ity, retention, and decision-making in AI systems, paving the way for more intelligent and socially345
aware reinforcement learning models.346
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A Appendix / supplemental material436

Appendix A - Additional Environment details437

Appendix A.1 - Blindsight task438

Blindsight is a neurological phenomenon where individuals with damage to their primary visual439
cortex can still respond to visual stimuli without consciously perceiving them.440

441
To study this, we use a simulated dataset that mimics the conditions of blindsight according442
to A. Pasquali & Cleeremans (2010). This dataset contains 400 patterns, equally split between two443
types:444

445
446

• Random noise patterns: These consist of low activations ranging between 0.0 and 0.02.447

• Designed stimulus patterns: Each pattern includes one unit that shows a higher activation level,448
varying between 0.0 and 1.0.449

This dataset allows us to test hypotheses concerning how sensory processing and network responses450
adapt under different conditions of visual impairment.451

452
We have three main testing scenarios, each designed to alter the signal-to-noise ratio to sim-453
ulate different levels of visual impairment:454

455
456

• Suprathreshold stimulus condition: Here, the network is tested against familiar patterns used457
during training to assess its response to known stimuli.458

• Subthreshold stimulus condition: This condition slightly increases the noise level, akin to actual459
blindsight conditions, testing the network’s capability to discern subtle signals.460

• Low vision condition: The intensity of stimuli is decreased to evaluate how well the network461
performs with significantly reduced sensory input.462

Appendix A.2 - Artificial Grammar Learning Task463

In the AGL experiment, Persaud et al. Persaud et al. (2007) demonstrate that participants exposed464
incidentally to letter strings generated by an artificial grammar perform better than chance on a465
subsequent, unexpected test where they distinguish between new grammatical and non-grammatical466
strings. However, they fail to optimize their earnings through wagering. Once participants were467
informed about the grammar rules, they began to place advantageous wagers (explicit condi-468
tion) A. Pasquali & Cleeremans (2010).469

470
To simulate this, we utilize artificially generated strings ranging from 3 to 8 letters, classified471
into three types: randomly generated, grammar A, and grammar B, as defined by Persaud et al.472

473
During training, the networks are exposed to two conditions: explicit and implicit, reflecting474
the results of implicit learning Dienes et al. (1995). For the implicit condition (low consciousness),475
networks are trained for 3 epochs, while for the explicit condition (high consciousness), they are476
trained for 12 epochs.477

Appendix A.3 - MinAtar478

MinAtar provides simplified versions of classic Atari 2600 games, designed specifically for AI agent479
testing and development. MinAtar offers more accessible and computationally efficient environ-480
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ments for AI research and experimentation Young & Tian (2019). There are 5 Atari games imple-481
mented:482

• Space Invaders: The player controls a cannon to shoot at aliens that move across and down the483
screen, with each destroyed alien providing +1 reward and causing the remaining aliens to speed484
up. Aliens also shoot back at the player, new waves spawn at increased speeds after clearing a485
wave, and termination occurs when the player is hit by an alien or bullet Young & Tian (2019).486

• Breakout: The player controls a paddle at the bottom of the screen to bounce a diagonally-487
traveling ball toward three rows of bricks at the top, earning +1 reward for each brick broken and488
getting new rows when all are cleared. The ball’s direction changes based on which side of the489
paddle it hits or when it contacts walls and bricks, with game termination occurring when the ball490
reaches the bottom of the screen Young & Tian (2019).491

• Seaquest: The player controls a submarine that can fire bullets at enemy submarines and fish,492
earning +1 reward for each hit while also rescuing divers to fill a progress bar and maintaining493
oxygen that depletes over time. Oxygen replenishes when surfacing with at least one rescued494
diver, surfacing with six divers provides additional rewards based on remaining oxygen, and the495
game ends when hit by enemies, running out of oxygen, or surfacing without divers Young &496
Tian (2019).497

• Asterix: The player moves freely in four cardinal directions to collect treasure while avoiding498
enemies that spawn from the sides, with each treasure providing a +1 reward and enemy contact499
causing termination. Enemy and treasure movements are indicated by trail channels, and the500
game’s difficulty increases periodically by enhancing the speed and spawn rate of both enemies501
and treasures Young & Tian (2019).502

• Freeway: The player moves vertically up and down at a restricted pace (once every 3 frames) to503
cross a road filled with horizontally-moving cars, earning +1 reward upon reaching the top before504
being returned to the bottom. When hit by a car, the player returns to the bottom without penalty,505
car speeds randomize after each successful crossing, and the game terminates after 2500 frames506
have elapsed Young & Tian (2019).507

Appendix A.4 - Meltingpot508

The Melting Pot Suite provides a comprehensive framework for generating test scenarios that509
assess an agent population’s ability to generalize cooperative behavior in new situations. It offers510
up to 50 distinct training and testing environments. The test scenarios combine novel background511
populations of agents and include a variety of substrates, such as classic social dilemmas like the512
Prisoner’s Dilemma, as well as complex mixed-motive coordination games. In our experiments,513
we selected four environments based on the coefficient of variation among the models tested in514
Agapiou et al. (2023). This value was calculated for the 37 non-zero-sum environments out of the515
50 available (see Figure 8). We chose the three environments with the lowest variability and the516
environment with the highest positive variability.517

518
Our tested environments are: Commons Harvest Closed, Commons Harvest Partnership,519

Chemistry Three Metabolic Cycles with Plentiful Distractors, and Territory Inside Out. A short520
description is provided below:521

522
523

• Commons Harvest Closed: Apples are dispersed and can be consumed by agents. Additionally,524
apples have a probability at every step to regrow, which depends on the number of nearby apples:525
0.0025 when there are three or more apples, 0.005 for two, 0.001 if there is one, and 0 otherwise.526
Thus, agents need to exercise restraint in consuming all apples in a batch to ensure the long-527
term regrowth of apples. Even though it is not beneficial to consume the last apple, agents are528
incentivized to do so to prevent other agents from consuming it. In this closed variant, there529
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Figure 8: Variability among Melting Pot environments according to the experimentation in Agapiou
et al. (2023).

are rooms full of apples, promoting agents to defend them and minimize the probability of other530
agents harvesting the full patch of apples Agapiou et al. (2023).531

• Commons Harvest Partnership: Similar to the Commons Harvest Closed environment, this532
variant still has rooms filled with apples. However, it requires two agents to protect a room, thus533
promoting the development of cooperative behavior and a mutually sustainable situationAgapiou534
et al. (2023).535

• Chemistry Three Metabolic Cycles with Plentiful Distractors: In this setting, a set of agents536
work to generate mutual benefits from metabolic reactions defined by a predefined graph. These537
reactions occur stochastically when reactants are in close proximity to one another. Agents can538
carry molecules and are rewarded when the molecule in their inventory is part of a reaction, either539
as a reactant or a product. In the three metabolic cycles variant, agents benefit from three dif-540
ferent cycles, which continue as long as the minimum energy requirements are fulfilled. Agents541
must learn to facilitate the right reactions to generate enough energy to sustain the cycles. The542
environment also contains distractors, which are molecules that do not provoke reactions but pro-543
vide a small constant reward to encourage agents to pursue less rewarding strategiesAgapiou et al.544
(2023).545

• Territory Inside Out: Each agent is assigned a unique color and seeks to claim territory by546
painting walls in that color. Wet paint does not yield rewards. After 25 steps following the547
application of paint, if no further paint has been added, the paint dries and turns into a brighter548
shade of the agent’s color. Once dry, the painted wall rewards the claiming player at a consistent549
rate. The more walls a player claims, the higher their expected rewards per timestep. In the Inside550
Out variant, agents are generated in a maze and must move inward toward the center of the map551
to claim territory. In this scenario, agents can zap each other, immobilizing the other agent for a552
set number of steps. An agent that is zapped twice is eliminatedAgapiou et al. (2023).553
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Appendix B - Hyperparameter choices and Computational resources554

Appendix B.1 - Blindsight task555

For the blindisight task, we used a Nvidia RTX3070 gpu for training, with 8GB of RAM. The556
training time was maximum for MAPS (2nd order network and cascade model in both 1st and 2nd557
order network). For this setting, training over the 450 seeds took roughly 12 hours.

Hyperparameter Value
Input size 100
Output size 100
Hidden size 60
lr first order 0.5
lr second order 0.1
Temperature 1.0
Step size 25
Gamma 0.98
Epochs number for training 200
Optimizer Adamax
Cascade iterations 50

Table 5: Hyperparameters used for the Blindsight Task.

558

Appendix B.2 - Artificial Grammar Learning Task559

For the AGL task, we used a Nvidia RTX3070 gpu for training, with 8GB of RAM. The training560
time was maximum for MAPS (2nd order network and cascade model in both 1st and 2nd order561
network). For this setting, training over the 450 seeds took roughly 12 hours.562

Hyperparameter Value
Input size 48
Output size 48
Hidden size 40
lr first order 0.4
lr second order 0.1
Temperature 1.0
Step size 1
Gamma 0.999
Epochs number for pre-training 60
Epochs number for training(high consciousness) 12
Epochs number for training(low consciousness) 3
Optimizer RangerV A
Cascade iterations 50

Table 6: Hyperparameters used for the Artificial Grammar Learning Task.
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Appendix B.3 - MinAtar563

For the MinAtar environments, we used a GPU V100 for training. The training time was maximum564
for MAPS (2nd order network and cascade model in both 1st and 2nd order network). For this565
setting, training took roughly 6 days per million steps per seed, and double when training with our566
curriculum learning approach.567

Hyperparameter Value
Batch size 128
Replay buffer size 100, 000
Target network update frequency 1, 000
Training frequency 1
Number of frames 500, 000
First N frames 100, 000
Replay start size 5, 000
End epsilon 0.1
Step size 0.0003
Step size (second order) 0.0002
Gradient momentum 0.95
Squared gradient momentum 0.95
Minimum squared gradient 0.01
Gamma 0.999
Step Size 1
Epsilon 1.0
Alpha 0.45
Cascade iterations 50
Optimizer Adam
Maxinputchannels(Continuouslearning) 10
weight task loss (Continuous learning) 0.3
weight weight regularization loss (Continuous learning) 0.6
weight feature loss (Continuous learning) 0.1

Table 7: Hyperparameters used for the MinAtar experiments.

Appendix B.4 - Meltingpot568

For the meltingpot tasks, we used a Nvidia A100 gpu for training. The average training time was569
roughly 16 hours per seed(baseline, MAPS not implemented fully, only with simple 2nd order net-570
work with no cascade model due to limitations with computational resources). Every run required571
roughly 4-6 GB of RAM, mainly depending on the number of agents.572

Hyperparameter Value
Num agents (harvest closed) 6
Num agents (harvest partnership) 4
Num agents (chemistry) 8
Num agents (territory) 5
Hidden size 100
Actor lr 7e− 5
Critic lr 100
Num env steps 15e6
Entropy coef 0.01
Clip param 0.2
Weight decay 1e− 5
PPO epoch 15
Optimizer Adam

Table 8: Common hyperparameters used for the Meltingpot environments.
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Appendix C - Architectures573

Appendix C.1 - Blindsight task and Artificial Grammar Learning Task574

Figure 9: Illustration of the architecture used for both the Blindsight and Artificial Grammar Learn-
ing tasks.
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Appendix C.2 - Meltingpot575

Figure 10: Illustration of the architecture used for all the Meltingpot environments
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Appendix D - Additional results576

Appendix D.1 - Meltingpot577

Figure 11: Results per episode over 1.5 million steps for commons harvest closed environment. To
the top left the evaluation parameter is dist entropy, which represents the action distribution entropy,
where a lower value points to a lower overall stochastic behaviour of the agents. The top right
represents the average reward of all agents, where a higher value is desired. Bottom left is the policy
loss, and bottom right is the actor gradient norm.

Figure 12: Results per episode over 1.5 million steps for commons harvest partnership environment.
To the top left the evaluation parameter is dist entropy, which represents the action distribution
entropy, where a lower value points to a lower overall stochastic behaviour of the agents. The top
right represents the average reward of all agents, where a higher value is desired. Bottom left is the
policy loss, and bottom right is the actor gradient norm.
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Figure 13: Results per episode over 1.5 million steps for chemistry environment. To the top left
the evaluation parameter is dist entropy, which represents the action distribution entropy, where a
lower value points to a lower overall stochastic behaviour of the agents. The top right represents
the average reward of all agents, where a higher value is desired. Bottom left is the policy loss, and
bottom right is the actor gradient norm.

Figure 14: Results per episode over 1.5 million steps for territory inside out environment. To the top
left the evaluation parameter is dist entropy, which represents the action distribution entropy, where
a lower value points to a lower overall stochastic behaviour of the agents. The top right represents
the average reward of all agents, where a higher value is desired. Bottom left is the policy loss, and
bottom right is the actor gradient norm.
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